Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2313849, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465849

RESUMO

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen. Here we report the refined single-particle cryo-electron microscopy (cryo-EM) structure of the inactivated mature TBEV vaccine strain Sofjin-Chumakov (Far-Eastern subtype) at a resolution of 3.0 Å. The increase of the resolution with respect to the previously published structures of TBEV strains Hypr and Kuutsalo-14 (European subtype) was reached due to improvement of the virus sample quality achieved by the optimized preparation methods. All the surface epitopes of TBEV were structurally conserved in the inactivated virions. ELISA studies with monoclonal antibodies supported the hypothesis of TBEV protein shell cross-linking upon inactivation with formaldehyde.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Anticorpos Antivirais , Microscopia Crioeletrônica , Vacinas de Produtos Inativados , Formaldeído
2.
Acta Crystallogr D Struct Biol ; 80(Pt 1): 44-59, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38164954

RESUMO

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 1012 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses. Tick-borne encephalitis virus (TBEV) represents an attractive model system for the development of enveloped virus purification and concentration protocols, given the availability of large amounts of inactivated virus material provided by vaccine-manufacturing facilities. Here, the development of a TBEV vaccine purification and concentration scheme is presented combined with a quality-control protocol that allows substantial amounts of highly concentrated non-aggregated suspension to be obtained. Preliminary single-particle imaging experiments were performed for this sample at the European XFEL, showing distinct diffraction patterns.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas , Humanos , Encefalite Transmitida por Carrapatos/prevenção & controle
3.
Emerg Microbes Infect ; : 2290833, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073510

RESUMO

AbstractThe main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far Eastern subtype. A 3.8  Šresolution reconstruction reveals the structural integrity of the envelope E proteins, specifically the E protein ectodomains. The comparative study shows high structural similarity to the previously published structures of the TBEV European subtype strains Hypr and Kuutsalo-14. A fraction of inactivated virions exhibits asymmetric features including the deformations of the membrane profile. We propose that the heterogeneity is caused by inactivation and perform a local variability analysis on the small parts of the envelope protein shell to reveal membrane curvature features possibly induced by the inactivation. The results of this study will have implications for design of novel vaccines against diseases caused by flaviviruses.

4.
Viruses ; 15(10)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37896752

RESUMO

Oncolytic viruses offer a promising approach to tumor treatment. These viruses not only have a direct lytic effect on tumor cells but can also modify the tumor microenvironment and activate antitumor immunity. Due to their high pathogenicity, flaviviruses have often been overlooked as potential antitumor agents. However, with recent advancements in genetic engineering techniques, an extensive history with vaccine strains, and the development of new attenuated vaccine strains, there has been a renewed interest in the Flavivirus genus. Flaviviruses can be genetically modified to express transgenes at acceptable levels, and the stability of such constructs has been greatly improving over the years. The key advantages of flaviviruses include their reproduction cycle occurring entirely within the cytoplasm (avoiding genome integration) and their ability to cross the blood-brain barrier, facilitating the systemic delivery of oncolytics against brain tumors. So far, the direct lytic effects and immunomodulatory activities of many flaviviruses have been widely studied in experimental animal models across various types of tumors. In this review, we delve into the findings of these studies and contemplate the promising potential of flaviviruses in oncolytic therapies.


Assuntos
Neoplasias Encefálicas , Flavivirus , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Flavivirus/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Encefálicas/terapia , Engenharia Genética , Microambiente Tumoral
5.
Biomedicines ; 10(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36289740

RESUMO

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus Flavivirus (family Flaviviridae). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA). All methods confirmed that the particles were monodisperse and that their mean size was ~50 nm. Cryo-EM data allowed us to obtain a 3D electron density model of the virus with clearly distinguishable E protein molecules. STEM-EELS analysis detected phosphorus in the particles, which was interpreted as an indicator of RNA presence. Altogether, the described analytical procedures can be valuable for the characterization of inactivated vaccine virus samples.

6.
Front Immunol ; 13: 970285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091004

RESUMO

The development and implementation of vaccines have been growing exponentially, remaining one of the major successes of healthcare over the last century. Nowadays, active regular immunizations prevent epidemics of many viral diseases, including tick-borne encephalitis (TBE). Along with the generation of virus-specific antibodies, a highly effective vaccine should induce T cell responses providing long-term immune defense. In this study, we performed longitudinal high-throughput T cell receptor (TCR) sequencing to characterize changes in individual T cell repertoires of 11 donors immunized with an inactivated TBE vaccine. After two-step immunization, we found significant clonal expansion of both CD4+ and CD8+ T cells, ranging from 302 to 1706 vaccine-associated TCRß clonotypes in different donors. We detected several waves of T cell clonal expansion generated by distinct groups of vaccine-responding clones. Both CD4+ and CD8+ vaccine-responding T cell clones formed 17 motifs in TCRß sequences shared by donors with identical HLA alleles. Our results indicate that TBE vaccination leads to a robust T cell response due to the production of a variety of T cell clones with a memory phenotype, which recognize a large set of epitopes.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas Virais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Encefalite Transmitida por Carrapatos/prevenção & controle , Humanos
7.
Nanomedicine (Lond) ; 17(7): 461-475, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35220724

RESUMO

Protein nanoparticles (NPs) can be used as vaccine platforms for target antigen presentation. Aim: To conduct a proof-of-concept study to demonstrate that an effective NP platform can be built based on a short self-assembling peptide (SAP) rather than a large self-assembling protein. Materials & methods: SUMO-based protein fusions (SFs) containing an N-terminal SAP and a C-terminal antigen were designed, expressed in Escherichia coli and purified. The structure was investigated by electron microscopy. The antibody response was tested in mice after two adjuvant-free immunizations. Results: Renatured SFs form fiber-like NPs with the antigen exposed on the surface and induce a significant antibody response with a remarkably high target-to-platform ratio. Conclusion: The platform is effective and has considerable potential for modification toward various applications, including vaccine development.


We aimed to extend the arsenal of protein platforms used for vaccine development. To this end, in this proof-of-concept study we constructed new self-assembling fusion proteins consisting of three modules. Module 1 is responsible for the self-assembly, while modules 2 and 3 are responsible for the immune response. Modules 1 and 2 form the platform, while module 3 represents the target antigen exposed on the surface of the self-assembled nanoparticles. After conventional biosynthesis in Escherichia coli, the proteins undergo efficient self-assembly during purification, and the resulting nanoparticles elicit a strong immune response without using an enhancing agent (adjuvant). The simple modular design and a high target-to-platform ratio of the immune response make our system a promising approach for practical applications, including vaccine development.


Assuntos
Nanopartículas , Vacinas , Adjuvantes Imunológicos , Animais , Apresentação de Antígeno , Camundongos , Nanopartículas/química , Peptídeos
8.
Hum Vaccin Immunother ; 16(9): 2123-2130, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32429733

RESUMO

Approximately 10,000 cases of tick-borne encephalitis (TBE), a serious disease of the central nervous system caused by tick-borne encephalitis virus (TBEV), are registered worldwide every year. Vaccination against TBE remains the most essential measure of preventing the disease. Unlike available TBE vaccines, a new inactivated lyophilized candidate vaccine Evervac is produced in Vero continuous cell culture and its final formulation does not include aluminum-based adjuvants. To study the safety and immunogenicity of Evervac, healthy adults 18-60 y of age were immunized twice at 30-d intervals. The study was single-blind, randomized, comparative, controlled, and was conducted in TBE-endemic areas. The commercial lyophilized vaccine TBE-Moscow was used as a comparison treatment. The subjects were observed for incidence, severity, and duration of adverse reactions. It was shown that the severity of local and systemic reactions in the Evervac vaccine group was mild to moderate. There were no significant differences in the incidence of adverse reactions between the Evervac and TBE-Moscow vaccine groups. Immunization with Evervac produced a significant increase in geometric mean titer (GMT) of anti-TBEV antibodies in both initially seronegative and seropositive recipients. The seroconversion rate for the initially seronegative recipients was 69% (GMT = 1:214) after the first dose and reached 100% after the second dose. In these parameters, there were no significant differences between the study and control vaccine groups. Thus, the adjuvant-free Vero-based vaccine Evervac was well tolerated, had low reactogenicity, induced a pronounced immune response, and was overall non-inferior to the commercial adjuvanted TBE vaccine used as a control.


Assuntos
Encefalite Transmitida por Carrapatos , Vacinas Virais , Anticorpos Antivirais , Técnicas de Cultura de Células , Encefalite Transmitida por Carrapatos/prevenção & controle , Humanos , Método Simples-Cego , Vacinas Virais/efeitos adversos
9.
ACS Appl Bio Mater ; 3(11): 7352-7356, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35019476

RESUMO

This work depicts an electrochemical hydrogel-eutectic gallium indium alloy interface for the detection of tick-borne encephalitis (TBE) virus. This interface allows recording of nonlinear current-voltage responses, depending on the composition of the hydrogel. The current-voltage data for the machine learning model are trained by a multilayer perceptron. This model accurately recognizes the TBE antibody, antigen, and an antibody-antigen complex in mixture with interfering bovine serum albumin with 93% accuracy. Thus, this interface can be used as a convenient method for expressed viruses and pathogens detection.

10.
Adv Virol ; 2019: 5323428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31933642

RESUMO

Up to 10,000 cases of tick-borne encephalitis are registered annually, 20% of which occur in children under 17 years of age. A comparison of the immunogenicity and safety between a new pediatric Tick-E-Vac vaccine based on the TBEV strain Sofjin and FSME-IMMUN Junior vaccine was performed in the Sverdlovsk region. The vaccine strains differ from strains of the Siberian subtype of TBEV that dominates in the region. The study was performed on 163 children aged 1 to 15, who received one of the vaccines according to either a conventional or rapid vaccination schedule. Immunogenicity was assessed based on the seroprotection rates and titers of virus-neutralizing antibodies. There were no significant differences in either the immunogenicity or reactogenicity of the pediatric vaccines based on strains of the Far Eastern or European subtypes of TBEV. Under both vaccination schedules, 30 days after the second injection, seroprotection rates were 100% for Tick-E-Vac and greater than 95% for FSME-IMMUN Junior, while the geometric mean titer of TBEV-neutralizing antibodies was at least 2,4 log10 (1 : 250) for either vaccine. Fourteen days after the second injection according to the rapid schedule, seroprotection rates were significantly lower, ranging from 50% to 63% regardless of the vaccine used. The observed adverse reactions were mild or moderate for both vaccines under both vaccination schedules, with total adverse event rates of less than 25%. Reactogenicity was not associated with the gender or age of the recipients. There were no statistically significant differences in the incidence of adverse reactions between the group of subjects who were baseline seronegative or seropositive. However, 14 days after the second vaccine injection according to the rapid schedule, a statistically significant difference in nAbs titers was identified between groups of children with and without reported reactions.

11.
J Med Virol ; 91(2): 190-200, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30204244

RESUMO

Tick-borne encephalitis (TBE) remains one of the major public health concerns in northern Eurasia, and its' area is expanding. TBE virus (TBEV) includes three subtypes and several monophyletic groups, cocirculating in Russia. Five inactivated vaccines are used for TBE prophylaxis. The rising number of people subjected to vaccination brings up the issue of the impact of individual recipient characteristics on vaccination efficacy. The present work studies correlations among the vaccination scheme, sex, age, body mass index (BMI), chronic diseases, postvaccinal reaction, pre-existing anti-TBEV antibodies, and postvaccinal humoral immunity development. Sera were collected during clinical trials in the TBEV Siberian subtype endemic area. Adult recipients were vaccinated with Tick-E-Vac and EnceVir vaccines based on Far-Eastern TBEV strains. Vaccine ability to induce humoral immunity in different categories of recipients was estimated by seroconversion rates and the percentage of recipients with high neutralizing antibody titers (≥1:500). High immunogenicity of vaccines based on Far-Eastern TBEV strains in the TBEV Siberian subtype endemic area in all groups of recipients was demonstrated. Impact of pre-existing contact with the virus and high BMI on humoral immune response development 14 days after the first immunization was evidenced. Nevertheless, the difference was significantly less pronounced 30 days after the first vaccination and undetectable after the second one.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Imunidade Humoral , Vacinas Virais/imunologia , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Federação Russa , Soroconversão , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Adulto Jovem
12.
Front Microbiol ; 9: 1487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061869

RESUMO

Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a serious public health threat in northern Eurasia. Three subtypes of TBEV are distinguished. Inactivated vaccines are available for TBE prophylaxis, and their efficacy to prevent the disease has been demonstrated by years of implication. Nevertheless, rare TBE cases among the vaccinated have been registered. The present study aimed to evaluate the protective efficacy of 4 TBEV vaccines against naturally circulating TBEV variants. For the first time, the protection was evaluated against an extended number of phylogenetically distinct TBEV strains isolated in different years in different territories. The protective effect did not strongly depend on the infectious dose of the challenge virus or the scheme of vaccination. All vaccines induced neutralizing antibodies in protective titers against the TBEV strains used, although the vaccines varied in the spectra of induced antibodies and protective efficacy. The protective efficacy of the vaccines depended on the individual properties of the vaccine strain and the challenge virus, rather than on the subtypes. The neutralization efficiency appeared to be dependent not only on the presence of antibodies to particular epitopes and the amino acid composition of the virion surface but also on the intrinsic properties of the challenge virus E protein structure.

13.
PLoS One ; 8(4): e61094, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585873

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8-16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.


Assuntos
Chlorocebus aethiops/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Encefalite Transmitida por Carrapatos/prevenção & controle , Encefalite Transmitida por Carrapatos/veterinária , Macaca fascicularis/imunologia , Vacinação , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Chlorocebus aethiops/virologia , Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Especificidade de Hospedeiro , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/virologia , Macaca fascicularis/virologia , Masculino , Baço/efeitos dos fármacos , Baço/imunologia , Baço/virologia , Resultado do Tratamento , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...